Olá companheiro de fórum!



- queira, por favor, ler os regulamentos e postar de acôrdo com eles.


- observe que existem diversas seções e coloque sua questão no local correto.


- abra um tópico para cada questão - uma questão por tópico

Seja bem vindo!

Relações de Girard e Triângulo de Pascal

Ver o tópico anterior Ver o tópico seguinte Ir em baixo

Relações de Girard e Triângulo de Pascal

Mensagem por Willian Honorio em Qui Ago 18 2016, 23:12

As relações de Girard até polinômios de 3º grau é tranquilo, mas e para polinômios de grau 4 pra cima? Assim , a maioria dos materiais didáticos dizem que são raízes tomadas duas a duas, três e três etc. Não consigo entender isso! Tem outra maneira de lembrar ou só decorando mesmo? Sobre triângulo de Pascal, pode ser vantajoso decorar pelo menos até 6 para evitar trabalho na hora de um vestibular durante a aplicação do binômio de Newton?? Grato.

Willian Honorio
Jedi
Jedi

Mensagens : 263
Data de inscrição : 28/04/2016
Idade : 19
Localização : São Paulo

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por rihan em Sex Ago 19 2016, 17:48

Willian Honorio escreveu:...As relações de Girard até polinômios de 3º grau é tranquilo, mas e para polinômios de grau 4 pra cima? Assim , a maioria dos materiais didáticos dizem que são raízes tomadas duas a duas, três e três etc. Não consigo entender isso! Tem outra maneira de lembrar ou só decorando mesmo?...

são combinações das raízes tomadas UMA a UMA, duas a duas, três e três etc.



2º Grau: 2 raízes

x1 + x2  = – b/a ----------------------> 1 a 1

x1 * x2  = c/a   2 a 2----------------------> 2 a 2


3º Grau: 3 raízes

x1 + x2 + x3 = – b/a----------------------> 1 a 1

x1 * x2 + x1 * x3 + x2 * x3 = c/a----------------------> 2 a 2

x1 * x2 * x3 = – d/a----------------------> 3 a 3


4º Grau:

x1 + x2 + x3 + x4 = – b/a----------------------> 1 a 1

x1 * x2 + x1 * x3 + x1 * x4 + x2 * x3 + x2 * x4 + x3 * x4 = c/a----------------------> 2 a 2

x1 * x2 * x3 + x1 * x2 * x4 + x1 * x3 * x4 + x2 * x3 * x4 = – d/a----------------------> 3 a 3

x1 * x2 * x3 * x4 = e/a----------------------> 4 a 4


 ...  Sobre triângulo de Pascal, pode ser vantajoso decorar  pelo menos até 6 para evitar trabalho na hora de um vestibular durante a aplicação do binômio de Newton?? Grato....

Não se "decora" o "Triângulo de Pascal" !

Se constrói !!!

1
1  1
1  2  1
1  3  3  1
1  4  6  4  1
1  5 10 10 5  1
1  6 15 20 15 1

Cada número é a soma do número acima e do anterior ao número acima.

Eu, antes de começar a prova, sempre fiz e ainda faço até a linha 11 ( começa da zero...).

Sempre vai se ganhar tempo. E tempo é importante em concursos...

Faça agora, de castigo Twisted Evil

1) Relações (Identidades) de Newton-Girard para polinômio do 5º grau

2) Triângulo de Pascal ( de Pingala, de Omar Kayan, de Yang Hui, de Tartaglia, ... affraid ) até  a linha 16 !

rihan
Estrela Dourada
Estrela Dourada

Mensagens : 5053
Data de inscrição : 22/08/2011
Idade : 61
Localização : Rio de Janeiro, RJ, Itabuna-Ilhéus, BA, Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por ruanchaves93 em Dom Ago 21 2016, 23:24

Eu também tinha esse problema com essas relações até me deparar com essa fórmula.

S(i) = (-1)^i * a(n-i) / a(n)

Por exemplo, raízes tomadas cinco a cinco de uma equação do sexto grau.

S(5) = (-1)^5 * a(1) / a(6)

Levando em conta que isso é uma notação pra equação abaixo:

a(6)x^6 + a(5)x^5 + a(4)x^4 + a(3)x^3 + a(2)x^2 + a(1)x^1 + a(0) = 0

Como você toma cinco a cinco? Imagina que as raízes são as horas de um relógio, você vai com o ponteiro pegando elas de cinco em cinco. É como se estivesse girando um círculo.

x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x1 + x4x5x6x1x2 + x5x6x1x2x3 + x6x1x2x3x4 + x1x2x3x4x5

Opa! Voltamos na primeira, já pode parar de girar.

ruanchaves93
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 167
Data de inscrição : 16/02/2016
Idade : 23
Localização : Palmas - TO - Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por rihan em Seg Ago 22 2016, 18:31

ruanchaves93 escreveu:Eu também tinha esse problema com essas relações até me deparar com essa fórmula.

S(i) = (-1)^i * a(n-i) / a(n)

O grande problema da educação, principalmente da matemática, no Brasil e no resto do planeta, é que quem "ensina" parte do princípio errado: o do "caminho mínimo".

A enorme maioria quer usar somente um caminho - o próprio -, sem compreender que cada ser é distinto de qualquer outro.

A enorme maioria quer esforço mínimo, para si.

" Eu explico assim e só assim ! Se puder, entenda, senão decore ! "

Isso causa, causou e causará uma geração de preguiçosos mentais !

Capazes de decorar problemas e soluções.

Mas, incapazes de resolver problemas novos ou desconhecidos, que não conduzam a qualquer solução ou método decorado.

Tive a honra e o prazer de conhecer pessoalmente uma das pessoas mais admiráveis, para mim e muitos outros:

O prêmio Nobel de Física e educador Richard Feynman no CBPF, onde eu estagiava e, ele, lecionava num curso de pós-doutorado em Física Nuclear e Astrofísica para doutores brasileiros.

Nessa época ele disse e escreveu algo assim:


"Foi a turma mais aplicada que eu tive em todo a minha vida docente. Sabiam resolver todos os problemas que eu ou outros docentes tinham mostrado como resolver. Mas, não conseguiam resolver problemas que não conheciam..."

Isso faz um bom tempo...

Qualquer disciplina tem que ser mostrada da seguinte forma:

1) Motivação:

O que aquela disciplina estuda, quer explicar, quer resolver.

Explicitar os principais problemas, conjecturas.


2) Alfabeto, Linguagem, Gramática e Convenções da disciplina.

Cada disciplina tem suas convenções, conjunto de símbolos, regras e "gírias".

Pode parecer chato e desperdício de tempo, mas é fundamental.


3) Princípios e Teoremas

Princípios - a palavra já diz tudo. Podem ser axiomas, postulados, não importa. É a base e, sem ela, a casa cai.

Teoremas e Conjecturas - Odiados por docentes e discentes, pois é o momento de se pensar, mas, pensar dói...


4) Aplicações

A parte de mostrar como a Teoria consegue enquadrar problemas e mostrar soluções, mas, infelizmente é a  parte decorada, tanto pelos docentes como pelos discentes...

E o paradoxo fica estabelecido:

Para não se perder tempo e energia cerebral em se compreender os Princípios e Teoremas, armazenando-se somente poucas coisas, gasta-se tempo, energia e um enorme armazenamento cerebral para se decorar problemas e soluções...

5) Diálogos, Discursos e Discussões

É inadmissível e indecente um "docente" projetar os conteúdos da disciplina, compartilhá-los com os discentes e ir embora, com a sensação de dever cumprido, sem que se motive e haja diálogos, discursos e discussões.

As "aulas" passam a ser somente um filme ou exibição de slides mudo, onde alguém lê as legendas para o triste e sonolento público.

Dito isso, tanto para explicar como para desabafar, vou, agora, falar do "Teorema Fundamental da Álgebra" e de suas consequências.


TFA escreveu:
No universo dos Complexos, um polinômio p(x) de grau n (natural não nulo) e an não nulo tem n raízes, sendo que as complexas sempre ocorrem em pares constituídos de um complexo e seu conjugado."  


Seja p(x) um polinômio de grau n:

p(x) ≡ anxn + an-1xn-1 + an-2xn-2 + ... +  a2x2 + a1x + a0  

p(x) = 0 ?

anxn + an-1xn-1 + an-2xn-2 + ... +  a2x2 + a1x + a0 = 0

S = { xn ; xn-1 ; ... ; x2 ; x1  }

Dividindo-se cada termo por  an :

xn + (an-1/an) xn-1 + (an-2/an) xn-2 + ... +  (a2/an) x2 + a1 x + (a0/an) = 0

E, consequentemente, pode ser escrito:

(x - xn ) ( x - xn-1 ) ... (x - x2 ) ( x - x1 ) ≡ 0

Que, desenvolvido, fornece, sinteticamente:

xn -  ( xn xn-1  ...  x2  x1 ) xn-1 + ... + ( xn + xn-1 +  ... +  x2 + x1 ) = 0

Pela identidade dos polinômios, tem-se:

xn  -  (xn xn-1 ... x2  x1) xn-1 + ... + (xn + xn-1 + ... +  x2 + x1) ≡ xn + (an-1/an) xn-1 +...+ (a0/an)

Que nos diz:

(xn xn-1   ...  x2  x1) = - (an-1/an)

(xn + xn-1 + ... +  x2 + x1) =  (a0/an)

Obviamente que em concursos, em função da importância elevada do fator tempo, é bom saber "de coração" essas duas últimas relações, que dá o  produto e a soma das raízes de qualquer polinômio em função dos coeficientes.

Mas, se por acaso não for relembrado, poderá ser achado, bastando o conhecimento do TFA, de polinômios e complexos.

Se o produto fosse desenvolvido completamente e não sinteticamente, e, pacientemente fossem colocados todos os termos, agrupando-os às respectivas potências da variável independente, chegar-se-ia às "Relações de Newton-Girard", que nada mais são do que somatórios de grupos combinados das raízes, de "um a um" a "n a n".

Experimente fazer para n= 1, 2, 3.

Você mesmo vai descobrir a "regra dos sinais" e a referida "fórmula":

S(i) = (-1)^i * a(n-i) / a(n)


Eu nunca guardei assim, pois penso que é uma forma de se escrever, não de se falar ou guardar...

Guardei assim:

"A relação dos coeficientes para a soma das raízes é positiva, o resto é alternado".

Ou, de outra forma: Os termos pares (começando-se com zero) são positivos e os ímpares...



...Como você toma cinco a cinco? Imagina que as raízes são as horas de um relógio, você vai com o ponteiro pegando elas de cinco em cinco. É como se estivesse girando um círculo.

x1x2x3x4x5 + x2x3x4x5x6 + x3x4x5x6x1 + x4x5x6x1x2 + x5x6x1x2x3 + x6x1x2x3x4 + x1x2x3x4x5

Opa! Voltamos na primeira, já pode parar de girar....

Bom método !

Eu faço de outra forma:

U = {1; 2; 3; 4; 5; 6 }

comb(6; 5) = 6

A primeira combinação: 12345

A ultima (sexta): 23456

Aí, vou me perguntando se posso ir aumentando o último índice (mais à direita) tendo como limite a última combinação, se posso, o faço, se não vou para o índice imediatamente à esquerda, e vou repetindo a pergunta até chegar na final:

12345

12346
12356
12456
13456

23456

Dessa maneira, as combinações ficam "ordenadas".

Termino com essa frase maravilhosa de Rivarol:


Antoine de Rivarol escreveu:
Les méthodes sont les habitudes de l'esprit et les économies de la mémoire.

Os métodos são os hábitos do espírito e as economias da memória.


rihan
Estrela Dourada
Estrela Dourada

Mensagens : 5053
Data de inscrição : 22/08/2011
Idade : 61
Localização : Rio de Janeiro, RJ, Itabuna-Ilhéus, BA, Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por ruanchaves93 em Seg Ago 22 2016, 20:53

Eu já li um artigo do Feynman criticando os cursos de Engenharia no Brasil, dizendo que são puro decoreba de fórmulas. Não sei se mudaram muito a proposta, mas em alguns lugares parece que continua o mesmo.

É muito bom saber o Teorema Fundamental da Álgebra para depois cair na fórmula, até porque esse Teorema cai bastante em vestibular de 2ª fase de exatas.

ruanchaves93
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 167
Data de inscrição : 16/02/2016
Idade : 23
Localização : Palmas - TO - Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por José Ricardo dos Santos em Seg Ago 22 2016, 21:22

ruanchaves93 escreveu:Eu já li um artigo do Feynman criticando os cursos de Engenharia no Brasil, dizendo que são puro decoreba de fórmulas. Não sei se mudaram muito a proposta, mas em alguns lugares parece que continua o mesmo.

É muito bom saber o Teorema Fundamental da Álgebra para depois cair na fórmula, até porque esse Teorema cai bastante em vestibular de 2ª fase de exatas.
Poderia me passar esse artigo do Feymann?

José Ricardo dos Santos
Estrela Dourada
Estrela Dourada

Mensagens : 1922
Data de inscrição : 16/04/2014
Idade : 20
Localização : Rio de Janeiro - RJ

https://plus.google.com/u/0/110157202619661128403/about/p/pub

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por rihan em Seg Ago 22 2016, 21:28

O Brasil não está no mesmo. Está pior.

No fundamental, no médio e no superior...

Mas, existe você e muitas outras pessoas que podem mudar isso.

Não desista !

cheers

rihan
Estrela Dourada
Estrela Dourada

Mensagens : 5053
Data de inscrição : 22/08/2011
Idade : 61
Localização : Rio de Janeiro, RJ, Itabuna-Ilhéus, BA, Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por José Ricardo dos Santos em Seg Ago 22 2016, 21:35

É esse aqui?
http://v.cx/2010/04/feynman-brazil-education

José Ricardo dos Santos
Estrela Dourada
Estrela Dourada

Mensagens : 1922
Data de inscrição : 16/04/2014
Idade : 20
Localização : Rio de Janeiro - RJ

https://plus.google.com/u/0/110157202619661128403/about/p/pub

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por ruanchaves93 em Seg Ago 22 2016, 22:09

É exatamente esse.
Achei ele traduzido, também.

https://cacetufba.wordpress.com/2012/02/17/a-realidade-da-educacao-brasileira-por-richard-feynman/

ruanchaves93
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 167
Data de inscrição : 16/02/2016
Idade : 23
Localização : Palmas - TO - Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por José Ricardo dos Santos em Seg Ago 22 2016, 22:31

Lerei.
Deve ter mudado a educação brasileira, pois os livros modernos os quais eu tenho de Física, são muito bons.
Em 1950, não se investia em educação como hoje, ainda mais na Ditadura.
O que acha, Ruan?

José Ricardo dos Santos
Estrela Dourada
Estrela Dourada

Mensagens : 1922
Data de inscrição : 16/04/2014
Idade : 20
Localização : Rio de Janeiro - RJ

https://plus.google.com/u/0/110157202619661128403/about/p/pub

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por rihan em Ter Ago 23 2016, 00:32

Ô Zé Rico,

Cadê a redação ??! Shocked !??

rihan
Estrela Dourada
Estrela Dourada

Mensagens : 5053
Data de inscrição : 22/08/2011
Idade : 61
Localização : Rio de Janeiro, RJ, Itabuna-Ilhéus, BA, Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por ruanchaves93 em Ter Ago 23 2016, 01:53

José Ricardo dos Santos escreveu:Lerei.
Deve ter mudado a educação brasileira, pois os livros modernos os quais eu tenho de Física, são muito bons.
Em 1950, não se investia em educação como hoje, ainda mais na Ditadura.
O que acha, Ruan?

Eu acredito que hoje existem centros de excelência, mas a maioria das faculdades no país ainda seguem modelos retrógrados de ensino.

As faculdades mais renomadas já podem ter atualizado seus métodos ( pelo menos em parte ), mas o que escuto sobre as menores ainda sõa as mesmas críticas feitas pelo Feynman.

ruanchaves93
Recebeu o sabre de luz
Recebeu o sabre de luz

Mensagens : 167
Data de inscrição : 16/02/2016
Idade : 23
Localização : Palmas - TO - Brasil

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por José Ricardo dos Santos em Ter Ago 23 2016, 04:06

rihan escreveu:Ô Zé Rico,

Cadê a redação ??! Shocked !??

kkkkkkkkk
Oi mestre, semana eu fiz a redação sobre possíveis causas, consequências e soluções sobre a obesidade, tema de redação da ESA. Fiz e entreguei para o meu irmão corrigir, na primeira eu fiz, e tirei 550, depois eu refiz, e fiz 600. Agora eu estou fazendo uma nova redação, que o tema é: "valorização do professor". Como o meu irmão não estará aqui na parte da manhã e da tarde, eu passarei minha redação amanhã para o fórum.

Um forte abraço e uma boa noite.

José Ricardo dos Santos
Estrela Dourada
Estrela Dourada

Mensagens : 1922
Data de inscrição : 16/04/2014
Idade : 20
Localização : Rio de Janeiro - RJ

https://plus.google.com/u/0/110157202619661128403/about/p/pub

Voltar ao Topo Ir em baixo

Re: Relações de Girard e Triângulo de Pascal

Mensagem por rihan em Ter Ago 23 2016, 16:45

! cheers !

Mas, em relação aos últimos posts...

1) Quanto a Feynman:

Ele fez um relatório na década de 50, que foi desprezado e ridicularizado tanto pela cúpula científica quanto pela cúpula militar do CBPF.

E o porquê do desprezo a Feynman ?

Nessa época ele ainda não tinha sido laureado com o Nobel em Física...

"Gringo metido, quem é ele pra falar da educação brasileira ?!?! "

Só que, quando eu o conheci, no seu retorno ao Brasil - terra de mulatas que ele amava ( ambas ... !) - ele já era Nobel...

Assim mesmo foi desprezado pelas autoridades que tinham competência para mudar alguma coisa.

2) Quanto aos militares:

E qual o porquê de militares em projetos científicos ?

Os militares sempre quiseram e ainda querem ter uma bombinha ou vantagem competitiva, pra qualquer eventualidade. Estão no papel deles de defender a Pátria a qualquer custo.

Para um militar, o raciocínio é simples: "se os outros tem, estão em vantagem, logo, nós temos que ter também..."


3) Quanto à Ditadura ou, para alguns, Regime Militar:


Engana-se quem acredita que milico é burro !

Que tem alguns, tem. Como em qualquer categoria.

Mas, sempre foram elite.

Em tecnologia, em ciência e educação.

As escolas e instituições militares públicas de ensino sempre foram referência no Brasil.

Alguém pode achar que é uma burrice ser militar. Ter que obedecer ordens sob penas severas, em caso de desobediência.

Ordens do tipo:

"Vão, marchem contra o inimigo. Estima-se uma perda de 70% do Batalhão, mas vamos vencer!"

A obediência, a disciplina e o respeito hierárquico são pilares fundamentais para os militares.

Imaginem, num front, a tropa querer ter uma DR com o capitão:

"Capita, pera aí, vai morrer muita gente, deixa quieto..."

A meritocracia é outro princípio primordial para os militares.

Coisa que os comunistas não gostam, pois partiram de um erro fundamental, imbecil e monstruoso:

"Todos os seres humanos são iguais."

Costumo dizer que não existe uma coisa igual a outra coisa, pois se assim fosse, seriam a mesma coisa, uma coisa só.

O filósofo já dizia que jamais será igual mergulhar de novo num mesmo rio, são outras águas, outro ser que mergulha...

Não interessa se a criatura for negra, branca, marrom, amarela ou verde !!!

Pobre, rica, capenga, caolha, seu gênero, opção sexual, religião, partido !!!!!!

O que ela fez e faz e terá capacidade de fazer é o que importa !

Na ditadura militar houve erros e acertos na Educação.

Nos governos socialistas e bolivarianos a educação despencou !

Isso eu posso afirmar categoricamente, por pesquisas, dados indiscutíveis e, principalmente, por ter testemunhado e vivenciado o processo no quase meio século de labuta na Educação.

rihan
Estrela Dourada
Estrela Dourada

Mensagens : 5053
Data de inscrição : 22/08/2011
Idade : 61
Localização : Rio de Janeiro, RJ, Itabuna-Ilhéus, BA, Brasil

Voltar ao Topo Ir em baixo

Ver o tópico anterior Ver o tópico seguinte Voltar ao Topo

- Tópicos similares

 
Permissão deste fórum:
Você não pode responder aos tópicos neste fórum